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Abstract

Service robots are expected to reliably make sense of complex, fast-changing environments. From a
cognitive standpoint, they need the appropriate reasoning capabilities and background knowledge required
to exhibit human-like Visual Intelligence. In particular, our prior work has shown that i) commonsense
reasoning is a necessary capability for Visual Intelligence and also that ii) commonsense reasoning
crucially requires the ability to reason about spatial relations between objects in the world. In this paper,
we first recap our approach to Visual Intelligence in robotics, which is based on a hybrid architecture
integrating a deep learning component with commonsense reasoning. We then present a framework for
spatial reasoning, which has been designed to support the commonsense reasoning component in our
architecture. Differently from prior approaches to qualitative spatial reasoning in robotics, the proposed
framework is robust to variations in the robot’s viewpoint and object orientation. In the paper, we also
show how this formally-defined framework can be operationalised in an off-the-shelf spatial database.
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1. Introduction

In all cases where it is inconvenient or even dangerous for us to intervene, there is an incentive to
delegate tasks to service robots: e.g., under the extreme conditions imposed by space explorations
[1], in hazardous manufacturing environments [2], or whenever social distance needs to be
maintained [3]. Another compelling use case for service robots is autonomously monitoring
office environments to prevent potential threats to the Health and Safety (H&S) of employees.
For instance, a power cable dangling in a corridor constitutes a trip hazard. Similarly, a sweater
left to dry on top of a heater may cause a fire. To tackle these tasks, at the Knowledge Media
Institute (KMi), we are developing HanS [4], the Health and Safety robot inspector.

Before delegating complex tasks to robots, however, we need to ensure that they can reliably
make sense of the stimuli coming from their sensors. Autonomous sensemaking remains an open
challenge, because it requires not only to reconcile the high-volume and diverse data collected
from real-world settings [5], but also to actually understand these data, going beyond mere pattern
recognition [6, 7].

From a vision perspective, the problem of robot sensemaking becomes one of enhancing the
Visual Intelligence of service robots, i.e., their ability to make sense of the environment through
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their vision system and epistemic competences [8]. Naturally, several epistemic competences
are required to build Visually Intelligent Agents (VIA). In HanS’ case, the first prerequisite to
detect the fire threat posed by a sweater lying on top of a heater is to recognise the sweater and
the heater in question. Moreover, HanS also needs spatial reasoning capabilities, to infer that the
sweater is touching the heater. It also needs to know that sweaters are made of cloth and that a
piece of cloth clogging an electric radiator can catch fire. The list goes on.

In [8], we identified a framework of epistemic requirements, i.e., knowledge properties and
reasoning capabilities, which are needed to develop Visually Intelligent Agents. We gauged these
requirements from cognitive theories that characterise the excellence of the human vision system
[9, 6]. These include the capability to track objects over time, to consider the spatial configuration
and functional parts that compose an object, as well as the knowledge of the physical and
material properties of objects, to name just a few [8]. Cognitively-inspired requirements were also
grounded in the types of classification errors that emerge when Deep Learning (DL) is applied
to real-world robotic scenarios. This error analysis highlighted that misclassifications could in
principle have been avoided, if the robot was capable of considering: (i) the canonical size of
objects, e.g., that mugs are generally smaller than bins, as well as (ii) the typical Qualitative
Spatial Relations (QSR) between objects. For instance, a fire extinguisher may be mistaken
for a bottle due to its shape. However, the proximity of a fire extinguisher sign is a strong
indication that the observed object is in fact a fire extinguisher. This element of fypicality relates
to the broader objective of developing Al systems which can reason about what is plausible, i.e.,
which exhibit commonsense [7, 10, 11, 12, 13]. Our most recent results [ 14] demonstrate that an
architecture which leverages the awareness of the typical sizes and spatial relations of objects can
significantly augment object recognition methods based on DL. In this context, the capability
to reason about the spatial configuration of objects is one of the requirements that contributes
to autonomous sensemaking. Thus, in this paper, we propose a framework for spatial reasoning
to support visual commonsense reasoning. The proposed framework is generically conceived
to support mobile ground robotic applications, i.e., robots that perceive the environment whilst
navigating it and that operate in contact with the ground.

Differently from the previous frameworks that have been proposed to link the geometrical and
perceptual data collected by a robot to formally-defined spatial concepts [15, 16], the proposed
framework can account for variations in the robot’s viewpoint and in the relative orientation of
objects. Importantly, the formally-defined QSR in this framework are also mapped to the type
of linguistic predicates used to describe commonsense spatial relations in English, which are
discussed within seminal theories of spatial cognition [17, 18]. Operationally, we realised the
proposed framework in a concrete architecture that capitalises on state-of-the-art Geographic
Information Systems (GIS). Ultimately, we demonstrate how the implemented framework can be
successfully applied to extract qualitative spatial relations in HanS’ use-case scenario.

2. Related work

Broadly speaking, spatial relations can be represented qualitatively - e.g., A contains B - or
quantitatively - e.g., the angle between A and B is 6 [19]. Following [16], Qualitative Spatial
Relations (QSR) can be further characterised as (i) metric, i.e., based on the metric distance



between objects (ii) fopological, i.e., describing the neighbourhood of objects, or (iii) directional,
i.e., relative to the axis directions in a reference coordinate system. The interested reader is
referred to [20] for a foundational review of qualitative spatial representations. Compared to
quantitative representations, qualitative representations are more similar to the kind of spatial
predicates involved in natural language discourse. As a result, qualitative spatial representations
are easier to interpret and aid Human-Robot Interaction [21, 22, 23]. Moreover, they are more
similar to the kinds of spatial predicates available within linguistic Knowledge Bases (KB) [24],
as well as within benchmark datasets for visual reasoning tasks, such as Visual Genome [25] and
SpatialSense [26]. Thus, relying on qualitative representations has the potential to facilitate the
repurposing of these resources in robotic contexts, especially given the paucity of comprehensive
KBs for Visually Intelligent Agents [8].

The problem of representing spatial relations has been actively researched for decades, produc-
ing many theoretical frameworks for spatial reasoning [27, 20, 28, 29]. In Robotics, extensive
efforts have been devoted to linking the robot sensor data and symbolic knowledge to the geo-
metric maps modelling its environment [30, 31, 32]. These efforts have produced intermediate
representational models also known as semantic maps, i.e., maps that contain, “in addition
to spatial information about the environment, assignments of mapped features to entities of
known classes” [30]. To combine the best of both worlds, futher approaches have been proposed
[15, 33, 34] where semantic maps are also interpreted with respect to formal spatial theories.

In general, spatial relations are expressed between object pairs, where one of the two objects
is considered as a reference, or landmark: e.g., bike near house. Young et al. [34] have used
Ring Calculus to represent the closeness of objects. The authors of [33] have relied on ternary
point calculus [35] to model directional relations with respect to both the robot’s location and the
location of the reference object. Thus, they reduced 3D object regions to point-like objects on
the 2D plane. Moreover, they assumed that the robot’s location does not change over time, and
is always defined with respect to a tabletop. Differently from [33], Deeken and colleagues [15]
represented directional relations by comparing 3D object regions through the halfspace-based
model of [16]. However, this model is based on the assumption that the robot’s viewpoint is
always aligned both with the global coordinate system of the map and with the inherent ori-
entation of the observed objects. Thus, it is not suitable to model the case of mobile ground
robots. In real-world scenarios, as the robot moves, its viewpoint changes over time and the
objects observed will be oriented differently. To address this issue, we propose to combine the
robot’s viewpoint and the orientation of the reference object within a contextualised frame of
reference. This contextualised frame of reference allows us to define a contextualised 3D region,
or Contextualised Bounding Box, which represents the location of the object with respect to both
the robot’s viewpoint and the frame of reference of a landmark. Crucially, the contextualised
frame of reference and Bounding Box can be defined for any combination of robot and landmark
location, thus ensuring that this framework can scale to many real-world robotic scenarios. Hence,
consistently with the design methodology recommended by related studies of spatial ontology
engineering [36, 37], we handle the ambiguity of language by situating spatial predicates with
respect to a geometric frame of reference. However, differently from upper-level ontologies of
space [27, 28, 29], which attempt to characterise how humans conceptualize spatial concepts
through language, the proposed representation is tailored to the spatial reasoning components
that mobile service robots need for visual sensemaking.



3. Proposed Framework

To define a spatial reasoning framework which satisfies the requirements of robot sensemaking,
we extend the formal theory of spatial reasoning presented in [16]. Moreover, we map the obtained
spatial relations to the commonsense predicates used to describe spatial relations between objects
in English. These predicates are gathered from cognitive theories [17, 18]. By making an explicit
link between formal Al theories and informal linguistic representations, we obtain a framework
for spatial reasoning that supports commonsense reasoning in robotic scenarios.

Notation. In what follows, we model definitions as First Order Logic (FOL) statements. We
represent logic variables through lowercase letters and constants through uppercase letters. We
also use lowercase initials to denote functions, while uppercase initials symbolise predicates. For
instance, sReg is a function, whereas Above is a predicate. Unless otherwise stated, free variables
are universally quantified.

Spatial primitives. Our domain of discourse DD is that of spatial objects, i.e., physical objects,
“which have spatial extensions” [20]. From this perspective, a spatial object is represented in
terms of the associated spatial region. In particular, we represent spatial regions as sets of spatial
points, p. Let P be the set of all spatial points, then, for each spatial object o € D, we assume the
existence of a function s Reg which, given o, returns the subset of P which includes all the points
in the spatial region of o.

SpatialObj(o) = sReg(o) < P (1)
SpatialObj(o) = sReg(o) # & ()

In particular, our focus is not on arbitrary collections of spatial points, but rather on one-piece
regions [20], i.e., on sets of internally connected points:

SpatialObj(o) = ProperSR(sReg(0)) 3)

To provide a formal definition of the concept of proper spatial region, we need first to establish a
spatial frame of reference.

Spatial frame of reference. A spatial object is characterised not only with respect to a spatial
region but also in terms of a reference coordinate system, also known as frame of reference. A
frame of reference consists of an origin point, O, and of a set of directed axes intersecting at
the origin. In particular, modelling the 3D space requires three reference axes, X, Y, Z. Once
we have defined a reference frame, we can interpret spatial points as geometrical points, i.e., as
coordinate triples in R3. Let G P be the set of all geometrical points in the considered space:

GP = {plp = (z,y,2) € R*} 4)

The identified frame of reference also has an associated granularity, i.e., an infinitesimally small
constant D > 0 in R, which defines the minimum distance for two geometrical points to be
considered as distinct entities. Two geometrical points are then said to be adjacent iff their
geometrical distance is equal to D. To compute the distance between two geometrical points,
they have to be in the same frame of reference. Let d(gp, gp’) be a function which returns a real
number indicating the geometric distance between points gp and gp’. Then:

Adj(gp, gp') < d(gp, gp’) = D &)



The definition of proper spatial region then follows from the notion of adjacency:
ProperSR(sr) < Ygp[gp € sr = Conn(gp, sr)] ©6)
Conn(gp, sr) < Vgp'[gp’ € sr A gp' # gp] = ConnP(gp, gp') @)
ConnP(gp1,gp2) < Adj(gp1, gp2) v 3gps[Adj(gp1, gps) » ConnP(gps, gp2)]  (8)

In our model, we assume that the global spatial region, G P, is a fully-connected set of points.
Moreover, we assume that spatial regions can be approximated through 3D boxes. This simplify-
ing assumption is consistent with standard practice in the literature [15, 16]. Bounding boxes
can have an arbitrary orientation around the Z axis aligned with gravity, but their base is always
parallel to the XY plane, as exemplified in Figure 1. In particular, we consider the minimum
bounding box which best approximates the real volume occupied by an object and which is
aligned with its natural orientation [8]. Let b be a set of geometrical points which contains the
spatial region of o:

BoundBox(b, 0) <> sReg(o) € b A b< GP 9)
MinBBox(b, 0) < BoundBox(b,0) n —3b'[BoundBox(V',0) A b’ < b] (10)

In this scenario, the environment navigated by a robot can also be modelled as a spatial region
including an arbitrary number of objects, i.e., as a global spatial region. Consequently, the outer
region of a spatial region, sr, is:

outReg(sr) = {gp|lgp € GP A gp ¢ sr} an

The frame of reference of the global region, F, is extrinsic, i.e., based on a reference point
which is external to both an object and an observer. F; remains fixed as the robot navigates the
environment. Conversely, the robot’s frame of reference, F;., changes as the robot moves. Thus,
it is deitic, relative to the observer’s position. In [16, 15], all the spatial relations between objects
are defined according to the same pre-defined frame of reference, whether it is an extrinsic, deitic
or intrinsic one, i.e., inherent to a specific object. Unlike the latter spatial theories, linguistic
spatial predicates implicitly refer both to (i) the location of the reference object, and to (ii) the
observer’s point of view [17]. Similarly, a robot would conclude that “A is on the left of B” based
not only on the location of objects A and B within F, but also on F;.. From a different standpoint,
A might appear on the right of B, or in front of it. To model such cases, we introduce the notion
of robot’s viewpoint, F,.. Let C, be the centroid of the spatial region representing object o. Then,
F,. is obtained by rotating F;. along Z,., by an angle «.. Specifically, « is the angle between X,
and the imaginary line connecting the origin of F}. with C,,.

Let F, of origin C, and axes X,,Y,, Z, be the intrinsic frame of reference of o, i.e., the
frame of reference which is aligned with the orientation of o. Then, the contextualised frame
of reference of the object, Fy, is the frame of reference of origin C, whose axes have the same
orientation of the axes defining the robot’s viewpoint, F,. (Figure 1). Based on F., we can
construct a Contextualised Bounding Box (CBB), which is obtained by aligning the minimum
bounding box with F.. Let rotZ(b, 0) be a function which returns the spatial region, sr, obtained
by rotating an input bounding box along Z by an angle 6. Given a frame of reference F,, then
yaw(sr, F,) returns the angle between the intrinsic frame of reference of sr and F, along Z.
Then, given 7/2:
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Figure 1: The robot’s viewpoint, F., consists of three axes X, (in red), Y, (in green) and Z,.,
(in blue). F,.» may not coincide with the frame of reference of the global map, F,;, nor with the
intrinsic frame of reference of the object, F,,. A spatial object is first modelled as the minimum 3D
box bounding the object. Then, F;. is translated to the object’s centroid to define a contextualised
frame of reference F.. Moreover, a Contextualised Bounding Box is generated (in blue), i.e.,
the bounding box which requires the minimum rotation along the Z axis to align the oriented
bounding box with F..

IsCBB(rotZ(b,0),0) < MinBBox(b,0) A 30[mod(yaw(rotZ(b,0), F.),n/2) = 0O
—30'[mod(yaw(rotZ(b,0'), F.), m/2) = 0 A 6’ < 6]] (12)

Namely, to construct CBB, we select the minimum angle 6 so that the value returned by the yaw
function is divisible by 7/2, i.e., the remainder of their division, mod, is zero. There are always
four possible alignments of a bounding box, b, for which mod is zero. Thus, by selecting the
minimum angle among these four, we apply the transformation which is least disruptive of the
natural orientation of the object.

Metric spatial relations. Given two spatial objects 01, 02 and two geometrical points gp1, gpo
where gp; € 01 and gps € 02, we define the distance between two geometrical points as the
their Euclidean distance. Then, the distance between two spatial objects is defined as the global
minimum of the pointwise distance function, d:

[distance(01,02) = d(gp1, gp2)] < gp1 € 01 A gpa € 02 A
Vaps, gpalgps € o1 A gpa € 02] = d(gps, gpa) > d(gp1, gp2) (13)
A distance threshold, 7', can be then introduced, to represent closeness between objects. That is,
for a T' greater than or equal to the frame granularity D defined earlier:
IsClose(o1, 02) <> distance(01,02) < T (14)
In particular, if the minimum distance equals D, then the two objects touch:
Touches(o1, 02) < distance(o1,02) = D (15)

Topological spatial relations Topological relations are spatial relations which are invariant
under a topological isomorphism, i.e., a function f : X — Y which preserves neighbourhood
relationships while mapping X to Y. Although a number of topological relations have been
proposed [20], here we focus on the intersection and containment relations. As shown in the
remainder of this Section, this minimal subset of relations, combined with metric and directional
relations, is sufficient to cover all the spatial relations required in the scenario of interest. First,



based on our prior definitions, two spatial regions, sr, s’ intersect iff they have at least one
geometrical point in common:

Int(sr, sr') < gplgp € sr A gp € sr'] (16)

We also define the spatial region representing the intersection between two objects (i.e., the
intersection between the associated spatial regions) as follows:

inter(ol,02) = {gp|gp € sReg(ol) A gp € sReg(02)} (17)

Then, a special case of the intersection relation is the case where one spatial region completely
contains the other:

ComplCont(sr, sr') < Vgplgp € sr’ = gp € sr] (18)

Semantically, o contains o’ completely iff all the geometrical points in the spatial region of o’ are
also members of the spatial region of o.

Directional spatial relations. Differently from metric and topological relations, directional
spatial relations are dependent on the considered frame of reference. The spatial reasoning
framework proposed by Deeken et al. [15] for robotic applications, which is based on the work
in [16], models directional relations by partitioning the outer spatial region of an object into six
halfspaces, i.e., one halfspace for each semi-axis of X, Y, Z. In particular, as in [15], halfspaces
can be modelled as 3D extrusions, obtained by multiplying the extent of the object spatial region
by a scaling factor s € R.

The coordinates of all geometrical points in the minimum bounding box are bound to a minimum
and maximum value, €.8., Tynin and Tpqq. Let X1 and X be the positive and negative semi-
axes of X,, in F,,. Then, we define a function, /s, which returns the halfspace of an input bounding
box, given semi-axis, X", and frame of reference, F,:

MinBBox(mby,01) = hs(mby, X, F,) =
{gp € outReg(mb1)|gp = (x,y, z) w.rt F,,

(19)

Additional halfspaces can be similarly derived for the other semi-axes in F},.Once these halfspaces
have been defined, one can test whether a second object oy lies within any of the halfspaces of
01. In particular, in the following, we consider “relaxed” (_r) spatial operators [16]. In other
words, we infer directional relations by testing whether o5 intersects the halfspaces of 0;. We use
capital initials to represent predicates symbolising the East, West, North, South, Above and Below
relations. Given a F,, which coincides with I, the relaxed definitions of East(02,01) is:

E_r(02, 01, F,) < MinBBox(mby,01) A Int(hs(mby, X}, F,), sReg(02)) (20)

The definitions of the remaining directional relations (i.e., W_r, N_r, S_r, A_r, B_r) are isomor-
phic to axiom 20 and are omitted for brevity. The model proposed in [15, 16] is based on the
assumption that I, is always aligned with F;. However, this assumption does not hold in the
case of mobile robot sensemaking. Indeed, the frame of reference of the robot, F;. is mobile,
i.e., its origin and orientation change over time. Moreover, the natural orientation of objects may
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Figure 2: Halfspaces are generated by extruding the 3D bounding boxes. The top and bottom
halfspaces are derived by extruding the minimum oriented bounding box along the Z axis (left-
hand side of the Figure). The left, right, front and bottom halfspaces are instead extruded from
the CBB (right-hand side of the Figure).

not be aligned with F;. Thus, to produce a representational model which suits the case of robot
sensemaking, we need to map directional relations to the contextualised frame of reference, F,
which we defined earlier. Specifically:

Above(oz, 01, F,) < A_r(02,01, F,) 2D

Below(03,01, F.) < B_r(03,01, Fy) (22)

Nonetheless, to model relations such as RightOf or LeftOf, we need to account for the robot’s
viewpoint. Thus, we apply the halfspace-based model to the Contextualised Bounding Box we
have defined earlier (see Figure 2). By definition, CBB is aligned with the contextualised frame

of reference, F¢, so the front halfspace of CBB, for instance, can be defined w.r.t. a given F as
follows:

IsCBB(cbby, 01) = hs(cbby, X, F.) =
{gp € outReg(cbb:)|gp = (z,y,z) w.rt.F,

! / /

Lmin — LTmin * S ST S Limins (23)
/ !

Ymin S Y < Ymaz»
/ /

Zmin Sz < Zmax

These spatial constructs allow us to define the remaining directional relations:
RightOf(02, 01, F.) < Int(sro, hs(cbby, Y, | F.)) (24)
LeftOf(09, 01, F..) < Int(sra, hs(cbby, Y, , F.)) (25)



InFrontOf(o2, 01, Fr.) < Int(sra, hs(cbby, X, , Fe)) (26)
Behind (03, 01, F.) < Int(sry, hs(cbby, X1, F.)) (27)

For brevity, in axioms 24-27 we have omitted the predicate IsCBB(cbb;, 01), which is always
valid. Thanks to these newly-defined spatial concepts, we can now specify how the latter QSR
align with linguistic spatial predicates. This mapping process is also known, in the qualitative
spatial reasoning literature, as qualification [38].

Qualification. In English, objects are represented by nouns while the spatial relationships
between objects are mainly represented through prepositions - e.g., on, next to, behind [17].
Spatial relations are also implied by using certain verbs (e.g., person wears shirt). However,
almost invariably, these verbs can be reduced to a simplified form, followed by a preposition
(e.g., person has shirt on). Hence, the canonical structure of a spatial sentence consists of three
elements: (i) a reference object and (ii) a figure object, both expressed as noun phrases, as well as
(iii) a spatial preposition. The reference object and the preposition, together, define the spatial
region occupied by the figure object. As pointed out in [17], the object’s top and bottom are
defined as “the regions at the ends of whichever axis is vertical in the object’s normal orientation"
[17]. Thus, they are conceptually equivalent to the notion of top and bottom halfspaces we defined
for the minimum oriented bounding box. Moreover, the object front is defined as the region at the
end of the object’s horizontal axis which also faces the observer. Conversely, the object back is
located opposite to the observer along the same axis. Finally, the region at the end of any other
horizontal axis can be called a side. As such, the geometric relations defined at axioms 21-22, and
24-27 are directly qualified through the Above, Below, RightOf, LeftOf, InFrontOf and Behind
predicates. However, the LeftOf and RightOf relations can be further combined so that, given F:

Beside(02, 01, F.) < RightOf(02, 01, F,) v LeftOf(02, 01, F¢) (28)

Furthermore, an object is said to be “near" another object if it is located in a region “extending
up to some critical distance" [17]. This notion corresponds exactly to our definition of predicate
IsClose (axiom 14).

An interesting case is that of the “on" preposition. One of the senses of “on" is semantically
related to “above". However, while “above" typically implies absence of contact between the
two objects, “on" strongly favours a contact reading [17]. Formally, we make this distinction by
defining:

OnTopOf(o2, 01, F,) < Above(oz, 01, F.) A Touches(oz,01) (29)
Nonetheless, the “on" preposition can also be used to denote that the figure object is supported by
the reference object. For instance, we say that a “clock is on the wall" although the two objects
overlap horizontally. The phrase “clock on wall" also implies that the wall is adequately stable to
support the clock. Indeed, if two objects differ in terms of size and mobility, we tend to consider

the larger and more stable object as reference [17]. To differentiate these additional uses of “on",
we define, for a given F:

LeansOn(o2, 01, F;) < Touches(0z,01) A —Above(0z,01, F¢) A
—Below(02, 01, F.) A Jos[Touches(o2,03) A Below(os, 09, F.)] (30)

Touches(02,01) A —Above(0z, 01, F;) A —=JosTouches(03, 02) = AffixedOn(o2, 01, F¢) (31)



Namely, whenever o9 is supported by a reference object 0; along the horizontal direction, it is
typically said to be “leaning against" o;: e.g., a ladder leaning against a wall. Furthermore, if the
reference object o1 provides the only support surface for o2, 05 is typically said to be AffixedOn
01: e.g., a ladder which is affixed on the wall, above ground. Nonetheless, there may be cases
where an object, 09, is physically affixed to a surface, o1, even though o; is not the only surface in
contact with oy: e.g., a ladder affixed at ground level. Hence, we used a single logic implication
in Statement 31.

The ‘in” preposition is polysemous [18]. First, “in” is generally used to imply that one object
is “inside” another, or, based on our prior topological definitions, that one object is completely
contained in the other (axiom 18). However, “in" is also used in cases where two objects only
partially compenetrate each other. For instance, we would say that “a cat is in the box" even when
the cat’s tail is peeping from the box. To define this notion of partial containment, we define a
function, adjSRCard, which, given two spatial regions, sr and sr’, returns the cardinality of the
set of points in sr’ that are adjacent to points in sr:

adjSRCard(sr, sr') = |{gp'|gp’ € outReg(sr) A gp' € sr’
A Agplgp € sr A Adj(gp, gp)]} (32)

Hence, we can now define partial containment as follows:

Partln(o01, 02) < sr = inter(sReg(01), sReg(02)) A
adjSRCard(sr, sReg(01)) < adjSRCard(sr, sReg(02))] (33)

Namely, o7 is partially contained in oy iff the number of points in oy that are adjacent to the
intersection region of o7 and o9 is strictly smaller than the number of points in o that are adjacent
to the same intersection region.

4. Coverage Study and Framework Implementation

In this Section, we show how our framework for spatial reasoning can be implemented in practice.
Specifically, we show that, once a set of basic spatial concepts has been derived through GIS
operators, our framework provides a method to combine these basic spatial concepts to model the
commonsense spatial predicates of [17].

Figure 3a shows an example of RGB-Depth (RGB-D) data collected through HanS’ Orbbec
Astra Pro monocular camera. At each time frame, ¢, the distance between the robot’s pose and
the surfaces reached by the laser in the depth sensor is measured. These data are also known as
depth images, and can be converted to collections of 3D geometrical points in the considered
frame of reference, i.e., to PointClouds. Consistently with [15], we store the object regions and
labels in the semantic map within a spatial database, implemented in PostgreSQL. By linking
these data to a spatial database, we can capitalise on the PostGIS engine and on the SFCGAL
backend, that provide a series of query operators for spatial reasoning in the 3D space. Objects
are stored in the PostGIS database using a minimum oriented polyhedron derived by applying the
Convex Hull algorithm on the segmented PointCloud.

Furthermore, we complete the spatial database with 3D polygons representing the walls. To
minimise the errors propagated from extracting the wall surfaces automatically, we developed a
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Figure 3: Example of operational workflow: (a) the PointCloud representing the observed scene
is segmented and annotated with object categories. Then, (b) the minimum oriented bounding
boxes and CBBs (in blue) are constructed. Lastly, (c) a set of QSR in figure-reference form is
derived. In Figures 3b, 3c we show a subset of the bounding boxes and QSR representing the
scene, for readability.

Graphic User Interface for annotating the wall edges on the 2D floorplan of the target environment
(Figure 4a). For each added edge, a record is automatically added to the spatial database,
indicating a wall surface. Namely, edges are extruded on the vertical axis by a fixed height, wy,
e.g., 4 meters in the case of our lab.

Once the spatial database has been populated, the contextualised bounding boxes and halfspaces
introduced in the previous section can be derived (Figure 3b), by capitalising on PostGIS operators.
Specifically, the mapping of spatial concepts to GIS operators is shown in Table 1a. Although
neither PostGIS nor SFCGAL support 3D containment tests, we circumvent this limitation by
comparing the volume of objects with the volume of their intersection region, through ST_Volume.
Namely, if the volume of the intersection region equals the volume of the smaller object, e.g., o,
then ComplCont(o, 0'). To compute only QSR which are in figure-reference form, i.e., aligned
with natural language [17], we sort objects by volume in descending order. Then, we only
compute the QSR between one object and the objects which are larger than it. For instance,
in Figure 3c, the QSR fire extinguisher 1 AffixedOn wall is extracted while the redundant wall
Behind fire extinguisherl is avoided. In this way, we also reduce the computational load of
extracting QSR for all pairwise object combinations.

In sum, PostGIS ensures a full coverage of the basic building blocks of our spatial framework.
Then, the commonsense relations defined in Section 3 can be seen as a combination of these
building blocks (Table 1b). The next step is evaluating how accurately these commonsense QSR
can be extracted from robot-collected images.



Figure 4: (a) The annotation tool, with walls marked as purple edges. (b) The complete robot
route is traced with blue dots, while the evaluated points of interest are highlighted in green. The
yellow triangles show the field of view of the robot.

5. Framework Evaluation

For evaluation purposes, we sampled 15 frames from a broader collection of RGB and Depth
data that was previously collected during one of HanS’ scouting routines. The broader overall
dataset, which was collected through a Turtlebot mounting an Orbbec Astra Pro camera and
consists of 1414 object regions, is publicly available, in addition to the implemented code, at
https://github.com/kmi-robots/spatial-KB/tree/test. Images were collected from varying robot
viewpoints and in unconstrained conditions of clutter. As a result, the object regions in the
populated spatial database (Section 4) can partially occlude one another. From the overall set, we
selected 15 frames, along the robot’s route, that maximise the number of objects in the robot’s
field of view (Figure 4b). We then completed the selected sample with dense annotations of
the spatial relations depicted in each scene. Consistently with our automated protocol for QSR
extraction (Section 4), we only annotated QSR that are in figure-reference form. Overall, our
evaluation sample is worth 268 spatial relations.

As summarised in Table 2, we tracked the Accuracy, Precision, Recall, and F1 metrics for
each type of commonsense QSR in the considered set. For each spatial predicate, we compute
evaluation metrics in binary terms: i.e., we assess whether a ground truth QSR was extracted or
not, through our system. Overall, the proposed framework allowed us to model and correctly
extract the majority of spatial relations depicted in the considered sample. Namely, 225 of the
268 ground truth QSR (84%) were successfully extracted. The Near and Beside predicates were
excluded from our evaluation. Indeed, in the case of natural scenes, Near can be seen as a
superclass of the QSR under evaluation, with the only exception of the Above relation, which
does not entail closeness - e.g., the sky is above. Similarly, the study of the Beside predicate is
subsumed by the evaluation of the more specific LeftOf and RightOf relations.

The measured F1 scores are equal to or greater than 80% for the majority of QSR types. The
extraction of the LeansOn, Below and Behind relations was relatively more challenging. In
the case of LeansOn, despite the high ratio of true positives (97% Recall), a higher number of
LeansOn relations was generated compared to the ground truth. A visual inspection of the results
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Table 1

(a) Coverage of spatial notions through PostGIS operators. (b) The basic spatial relations covered
by PostGIS are combined to derive more complex QSR.

revealed that these false positives were mainly caused by segmentation issues. In particular,
a subset of object regions also include points of the occluding objects, as a result of deriving
PointClouds from 2D-segmented masks. Moreover, a portion of true positives for the Below
class was missed, due to approximating object regions as rectangular boxes. For instance, in the
case of a desktop computer below a desk, the bounding box representing the desk also includes
the hollow space between the legs. Hence, objects lying under the desktop do not intersect
the bottom halfspace. The lowest accuracy score is associated to the Behind relation. We can
ascribe this result to the fact that PointClouds were derived from individual depth images, without
reconstructing regions behind the surfaces which are reached by the laser sensor. Additional
causes of errors that were discovered from visually inspecting the results include: (i) inaccurate
sensor measurements, yielding noisy object regions, as well as (ii) misalignments between wall
annotations on the 2D map and the object-wall distance measured through the depth sensor. In
sum, many resulting errors are related to the problem of accurately modelling object regions in
real-world environments, rather than to the system’s ability to infer spatial relations from object
regions. Indeed, despite the challenges posed by this realistic robotic scenario, the proposed
framework ensured an average F1 score of 83,1% across the evaluated relation types.

Our further experiments on the complete image set [14] show that realising a spatial reasoning
module that adheres to the proposed framework significantly enhances the robot’s ability to



\Avg. \ OnTopOf LeansOn AffixedOn LeftOf RightOf Above Below InFrontOf Behind

Accuracy | 71.6 88.3 65.3 74.2 66.7 75.0 815 636 73.0 56.5
Precision | 85.3 94.6 66.7 85.2 90.9 100. 846 875 81.8 76.5
Recall 82.5 93.0 97.0 85.2 71.4 75.0 956  70.0 87.1 68.4
Fi 83.1 93.8 79.0 85.2 80.0 85.7 89.8 778 84.4 72.2

Table 2

Evaluation of the extracted QSR, with metrics in percentages.

recognise objects, particularly when spatial awareness is coupled with the knowledge of object
sizes.

6. Conclusion and Future Work

In this paper, we have presented a framework for spatial reasoning which satisfies the requirements
of robot sensemaking in real-world scenarios. Differently from prior approaches to qualitative
spatial reasoning in robotics, this framework is robust to variations in the robot’s viewpoint
and object orientation, thus ensuring scalability to many application scenarios. Crucially, this
framework contributes a cognitively-inspired conceptual layer on top of geometrical spatial
operators, to model commonsense spatial predicates. The resulting linguistic predicates facilitate
the integration of background spatial knowledge from external resources. As such, the proposed
framework contributes to the broader objective of developing Visually Intelligent Agents, which
can reliably assist us with our daily tasks. Conveniently, the proposed framework can be fully
implemented with state-of-the-art GIS technologies. Moreover, it led to the accurate extraction
of 84% of the spatial relations from real-world images collected by a robot in the context of
autonomous Health and Safety monitoring.

Because our framework was built on previous works that have modelled QSR with crisp
spatial definitions, it does not capture uncertainty. In [14] we have introduced a definition of
typicality of the QSR, to accompany spatial relations with belief scores based on background
knowledge. However, this representational frame could be further extended by introducing fuzzy-
logic statements. Moreover, the proposed QSR are designed to model situations at individual
time frames. For instance, a clock may be affixed to the wall at time ¢1 and lie on the floor at
time t2. Therefore, in our future work, we also aim at examining the spatio-temporal evolution of
these relations.
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